Nitrat: karakteristik antinutrisi, dampak negatif, potensi aditif, dan efektivitas agen defaunasi
Authors
Mila Riskiatul Rohma , Irfan Zubairi , Aldian Dwi Aryono , Lanang Nasrullah , Desy Cahya WidianingrumDOI:
10.25047/animpro.2021.3Published:
23 December 2021Issue:
Vol. 2 (2021): The 2nd National Conference of Applied Animal Science (CAAS) 2021Keywords:
keracunan nitrat, agen defaunasi, global warming, aditif pakan potensialConference Paper
Downloads
How to Cite
Downloads
Metrics
Abstract
Kajian pustaka ini memberikan informasi karakteristik, dampak negatif, dan potensi aditif, dan efek positif dari penggunaan antinutrisi nitrat. Antinutrisi merupakan komponen senyawa metabolit sekunder yang terkandung di dalam tanaman dan dapat membahayakan ternak. Dampak negatif dari nitrat diantaranya keracunan pada ternak akibat reduksi nitrat dalam darah membentuk methamoglobin (MetHb) dan berpotensi menyebabkan keguguran pada ternak bunting akibat hypoxia. Meskipun demikian, nitrat dalam konsentrasi rendah dapat digunakan sebagai aditif pakan dan berdampak positif bagi produktifitas ternak. Pemanfaatan nitrat dalam bahan pakan hijauan bermanfaat sebagai agen defaunasi pada rumen ternak ruminansia. Penurunan populasi protozoa dalam rumen dapat meningkatkan kecernaan serat kasar sehingga bersifat menguntungkan karena terjadinya efisiensi produksi dan meningkatnya pertumbuhan ternak. Efek positif bagi lingkungan dengan adanya defaunasi adalah menurunkan emisi gas metan sebagai hasil dari proses metabolisme ternak ruminansia. Kesimpulan dari tulisan ini adalah senyawa antinutrisi pada pakan disamping memiliki dampak negatif, juga besar kemungkinan memiliki potensi yang dapat dimanfaatkan baik bagi ternak maupun lingkungan.
References
[IPCC] Intergovernmental Panel on Climate Change. (2014). 2013 Supplements to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. T Hiraishi, T Krug, K Tanabe, N Srivastava, J Baasansuren, M Fukuda, TG Troxler, editors. Switzerland: Intergovernmental Panel on Climate Change.
Aban, M., & Bestil, L. (2016). Potential of some legume forages for rumen defaunatio
Asanuma, N., Yokoyama, S., & Hino, T. (2014). Effects of nitrate addition to a diet on fermentation and microbial populations in the rumen of goats, with special reference toSelenomonas ruminantiumhaving the ability to reduce nitrate and nitrite. Animal Science Journal, 86(4), 378–384. doi:10.1111/asj.12307
Cassandro, M., Mele, M., & Stefanon, B. (2013). Genetic aspects of enteric methane emission in livestock ruminants. Italian Journal of Animal Science, 12(3), 450–458.
Dayyani, N., Karkudi, K., & Zakerian, A. (2013). Special rumen microbiology. International Journal of Advanced Biological and Biomedical Research, 1(11), 1397–1402.
El-Zaiat, H. M., Araujo, R. C., Soltan, Y. A., Morsy, A. S., Louvandini, H., Pires, A. V., ... & Abdalla, A. L. (2014). Encapsulated nitrate and cashew nutshell liquid on blood and rumen constituents, methane emission, and growth performance of lambs. Journal of Animal Science, 92(5), 2214-2224.
Gebeyehu, A., & Mekasha, Y. (2013). Defaunation: effects on feed intake, digestion, rumen metabolism and weight gain. J. Anim. Sci, 84(7), 1896–1906. https://doi.org/10.2527/jas.2005-652
Glunk, E., March, K., Dave, W., & Clain, J. (2015). Nitrate Toxicity of Montana Forages. Bozeman: Montana State University Extension.
Hapsari, Novia S., Dian W., Anis M. (2018). Fermentasi Pakan dengan Imbuhan Ekstrak Daun Babadotan (Ageratum conyzodies) dan Jahe (Zingiber Officinale) pada Sapi Perah Secara In Vitro. Jurnal agripet, 18(1), 1-9
Herliatika, A & Widyawati, Y. (2021). Mitigation of Enteric Methane Emission through Feed Modification and Rumen Manipulation. WARTAZOA. 31(1), 1-12. DOI: http://dx.doi.org/10.14334/wartazoa.v31i1.2706
Holmes, D. E., Giloteaux, L., Orellana, R., Williams, K. H., Robbins, M. J., & Lovley, D. R. (2014). Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments. Frontiers in Microbiology, 6(5), 1–9. https://doi.org/10.3389/fmicb.2014.00366
Hristov, A. N., Oh, J., Firkins, J., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H. P. S., Adesogan, A. T., Yang, W., Lee, C., Gerber, P. J., Henderson, B. and Tricarico, J. M. 2013. Special topics _ Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 91, 5045-5069.
Hulshof, R. B. A., Berndt, A., Gerrits, W. J. J., Dijkstra, J., Van Zijderveld, S. M., Newbold, J. R., & Perdok, H. B. (2012). Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. Journal of animal science, 90(7), 2317-2323.
Jayanegara, Anuraga., M Ridla., Erika B., & Nahrowi. (2019). Komponen antinutrisi pada pakan. IPB press. Bogor
Jönck, F., Gava, A., Traverso, S. D., Lucioli, J., Furlan, F.H., & Gueller, E. (2017). Spontaneous and experimental poisoning by nitrate/nitrite in cattle fed Avenasativa (oat) and/or Lolium spp. (ryegrass). Pesquisa Veterinária Brasileira, Rio de Janeiro, 33(9), 1062-1070, doi: 10.1590/S0100-736X2013000900003.
Lamid, M., Puspaningsih, N.N.T., dan Mangkoedihardjo, S. 2013. Addition of lignocellulolytic enzymes into rice straw improves in vitro rumen fermentation products. J Appl Environ Biol Sci, 3 (9), 166-171.
Lee, C., Araujo, R. A., Koenig, K. M. and Beauchemin, K. A. (2014). Effects of encapsulated nitrate on toxicity, feed intake and feed consumption rates in beef cattle. J Anim Sci, 93 (10), 4956-66. doi: 10.2527/jas.2015-9435.
Lee, C., Araujo, R. A., Koenig, K. M. and Beauchemin, K. A. 2015. Effects of encapsulated nitrate on enteric methane production and nitrogen and energy utilization in beef heifers. J. Anim. Sci, 93(5), 2405-18. doi: 10.2527/jas.2014-8851
Leng, R. A., Preston, T. R., & Inthapanya, S. (2012). Biochar reduces enteric methane and improves growth and feed conversion in local “Yellow” cattle fed cassava root chips and fresh cassava foliage. Livestock Research for Rural Development, 24(11).
Li, L., Davis, J., Nolan, J., & Hegarty, R. (2012). An initial investigation on rumen fermentation pattern and methane emission of sheep offered diets containing urea or nitrate as the nitrogen source. Animal Production Science, 52(7), 653-658.
Mamvura C, Cho S, Mbiriri D, Lee H, Choi N. (2014). Effect of Encapsulating Nitrate in Sesame Gum on In vitro Rumen Fermentation Parameters Anim Biosci. 27(11), 1577-1583. https://doi.org/10.5713/ajas.2014.14280
Mosoni, P., Martin, C., Forano, E., & Morgavi, D. P. (2011). Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep1. Journal of Animal Science, 89(3), 783–791. https://doi.org/10.2527/jas.2010-2947
Mustofa, Arif. (2015). Kandungan Nitrat dan Pospat Sebagai Faktor Tingkat Kesuburan Perairan Pantai. Jurnal DISPROTEK, 6(1), 13-19.
Norberg, S and Don, L. (2014). Nitrate poisoning in ruminants. Washington: Washington State Universsity Extension.
Pfister, J. A. (2019). Nitrate intoxication of ruminant livestock. In The ecology and economic impact of poisonous plants on livestock production (pp. 233-259). CRC Press.
Putri, W. A. E., Purwiyanto, A. I. S., Agustriani, F., & Suteja, Y. (2019). Kondisi nitrat, nitrit, amonia, fosfat dan BOD di muara Sungai Banyuasin, Sumatera Selatan. Jurnal Ilmu dan Teknologi Kelautan Tropis, 11(1), 65-74. doi:10.29244/jitkt.v11i1.18861.
Van Zijderveld, S. M. (2011). Dietary strategies to reduce methane emissions from ruminants. Wageningen University, Wageningen.
van Zijderveld, S. M., Gerrits, W. J., Dijkstra, J., Newbold, J. R., Hulshof, R. B., & Perdok, H. B. (2011). Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. Journal of dairy science, 94(8), 4028–4038. https://doi.org/10.3168/jds.2011-4236
van Zijderveld, S. M., Gerrits, W. J., Apajalahti, J. A., Newbold, J. R., Dijkstra, J., Leng, R. A., & Perdok, H. B. (2010). Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. Journal of dairy science, 93(12), 5856–5866. https://doi.org/10.3168/jds.2010-3281
Wang, Y., Zhou, W., Jia, R., Yu, Y., & Zhang, B. (2020). Unveiling the activity origin of a copper‐based electrocatalyst for selective nitrate reduction to ammonia. Angewandte Chemie, 132(13), 5388-5392.
Widiawati Y, Herliatika A, Zuratih, saptati RA. (2019). Emisi dari subsektor peter nakan. Dalam: Metode penilaian adaptasi dan inventarisasi gas rumah kaca sektor pertanian. Agus F, penyunting. Jakarta (Indonesia): IAARD Press.
Yanuartono , Alfarisa, N., Soedarmanto. I., Hary. P. (2019). Peran protozoa pada pencernaan ruminansia dan dampak terhadap lingkungan. Journal of Tropical Animal Production, 20 (1), 16-28. DOI: 10.21776/ub.jtapro.2019.020.01.3
Zhou, Z., Yu, Z., & Meng, Q. (2012). Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures. Bioresource technology, 103(1), 173–179. https://doi.org/10.1016/j.biortech.2011.10.013
License
Copyright (c) 2021 Mila Riskiatul Rohma, Irfan Zubairi, Aldian Dwi Aryono, Lanang Nasrullah, Desy Cahya Widianingrum
This work is licensed under a Creative Commons Attribution 4.0 International License.