Pengaruh suplementasi nano zinc dalam pakan terhadap efisiensi pakan ayam KUB

Authors

  • Nova Hidayati Diyah Larasati Politeknik Negeri Jember
  • Nanung Danar Dono Universitas Gadjah Mada
  • Bambang Ariyadi Universitas Gadjah Mada

DOI:

https://doi.org/10.25047/animpro.2024.743

Keywords:

feed efficiency, nanoparticles, zinc supplementations, KUB chickens

Abstract

Current trial was intended to study the effects of nano zinc dietary supplementation on the growth performance of KUB Chickens. Two hundred KUB chicks were distributed randomly into five treatment levels with four replications, and ten chicks in each replicate pen. The dietary nano zinc treatments were: basal diet without nano zinc supplementation (NZ-0) and a basal diet supplementation with nanoparticle zinc oxide at concentrations of 15 mg/kg (NZ-1), 30 mg/kg (NZ-2), 45 mg/kg (NZ-3), or 60 mg/kg (NZ-4). The analyzed variable data were feed intake, feed conversion ratio (FCR), protein intake (PI), protein efficiency ratio (PER), energy intake (EI), and energy efficiency ratio (EER) based on the 10 weeks rearing period. The pooled data were analyzed statistically with one way ANOVA and followed subsequently with Duncan’s test for the data with significant difference. Results indicated that dietary supplementation of 60 mg/kg nano zinc increased feed intake, protein intake, energy intake (P<0,05), reduced feed convertion ratio (P<0,05), and increased energy efficiency ratio (P<0,01). Meanwhile, dietary supplementation of 60 mg/kg nano zinc did not affect the protein efficiency ratio (P>0,05). Taken together, our data indicated that the feed efficiency of the KUB chickens improved when the diet were supplemented with 60 mg/kg nanoparticle zinc.

Downloads

Download data is not yet available.

References

Yunianta., Astuti, A., Mawardi, N. K., Darini, M. T., Sastrohartono, H., . K., & Sofi’ul Anam, M. (2023). The Effect of Nano-bentonite Supplementation on Reducing the Toxicity of Aflatoxin B1 in Kampung Unggul Balitbangtan Chickens Diet. Journal of World’s Poultry Research. https://doi.org/10.36380/jwpr.2023.27

Ahmadi, F. (2013). The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. International Journal of Biosciences (IJB), 3(7), 23–29. https://doi.org/10.12692/ijb/3.7.23-29

Ao, T., Pierce, J. L., Power, R., Dawson, K. A., Pescatore, A. J., Cantor, A. H., & Ford, M. J. (2006). Evaluation of Bioplex Zn® as an organic zinc source for chicks. International Journal of Poultry Science, 5(9), 808–811. https://doi.org/10.3923/ijps.2006.808.811

Bratz, K., Gölz, G., Riedel, C., Janczyk, P., Nöckler, K., & Alter, T. (2013). Inhibitory effect of high-dosage zinc oxide dietary supplementation on Campylobacter coli excretion in weaned piglets. Journal of Applied Microbiology, 115(5), 1194–1202. https://doi.org/10.1111/jam.12307

Brugger, D., & Windisch, W. M. (2016). Subclinical zinc deficiency impairs pancreatic digestive enzyme activity and digestive capacity of weaned piglets. British Journal of Nutrition, 116(3), 425–433. https://doi.org/10.1017/S0007114516002105

Bunglavan, S. J., Garg, A. K., Dass, R. S., & Shrivastava, S. (2014). Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livestock Research International, 2(3), 36–47. www.jakraya.com/journa/lri

Dono, N. D. (2012). Nutritional Strategies To Improve Enteric Health and Growth Performance of.

ElKatcha, M., Soltan, M., & Elbadry, M. (2017). Effect of Dietary Replacement of Inorganic Zinc by Organic or Nanoparticles Sources on Growth Performance, Immune Response and Intestinal Histopathology of Broiler Chicken. Alexandria Journal of Veterinary Sciences, 55(2), 129. https://doi.org/10.5455/ajvs.266925

Hu, X., Sheikhahmadi, A., Li, X., Wang, Y., Jiao, H., Lin, H., Zhang, B., & Song, Z. (2016). Effect of Zinc on Appetite Regulatory Peptides in the Hypothalamus of Salmonella-Challenged Broiler Chickens. Biological Trace Element Research, 172(1), 228–233. https://doi.org/10.1007/s12011-015-0582-2

Masito, M., Putra, A. R. S., & Andarwati, S. (2022). The effect of Kampung Unggul Balitbangtan (KUB) chicken innovation characteristics toward the development of farmers perceptions in South Sumatra. IOP Conference Series: Earth and Environmental Science, 1001(1). https://doi.org/10.1088/1755-1315/1001/1/012027

Park, S. Y., Birkhold, S. G., Kubena, L. F., Nisbet, D. J., & Ricke, S. C. (2004). Review on the role of dietary zinc in poultry nutrition, immunity, and reproduction. Biological Trace Element Research, 101(2), 147–163. https://doi.org/10.1385/BTER:101:2:147

Pathak, S. S., Reddy, K. V, & Prasoon, S. (2016). Influence of different sources of zinc on growth performance of dual purpose chicken. J.Bio.Innov, 5(5), 663–672.

Rosi, N. L., & Mirkin, C. A. (2021). Nanostructures in Biodiagnostics. Spherical Nucleic Acids: Volume 1, 1, 13–53. https://doi.org/10.1201/9781003056676-3

Sahoo, A., Swain, R. K., Mishra, S. K., & Jena, B. (2014). Serum biochemical indices of broiler birds fed on inorganic, organic and nano zinc supplemented diets. International Journal of Recent Scientific Research, 5(11), 2078–2081.

Sheoran, N. (2017). Role of Nanotechnology in Poultry Nutrition. International Journal of Pure & Applied Bioscience, 5(5), 1237–1245. https://doi.org/10.18782/2320-7051.5948

Tabatabaie, M. M., Aliarabi, H., Saki, A. A., Ahmadi, A., & Hosseini Siyar, S. A. (2007). Effect of different sources and levels of zinc on egg quality and laying hen performance. Pakistan Journal of Biological Sciences, 10(19), 3476–3478. https://doi.org/10.3923/pjbs.2007.3476.3478

Wijnhoven, S. W. P., Peijnenburg, W. J. G. M., Herberts, C. A., Hagens, W. I., Oomen, A. G., Heugens, E. H. W., Roszek, B., Bisschops, J., Gosens, I., Van De Meent, D., Dekkers, S., De Jong, W. H., Van Zijverden, M., Sips, A. J. A. M., & Geertsma, R. E. (2009). Nano-silver - A review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3(2), 109–138. https://doi.org/10.1080/17435390902725914

Yu, Y., Lu, L., Wang, R. L., Xi, L., Luo, X. G., & Liu, B. (2010). Effects of zinc source and phytate on zinc absorption by in situ ligated intestinal loops of broilers. Poultry Science, 89(10), 2157–2165. https://doi.org/10.3382/ps.2009-00486

Zha, L. Y., Xu, Z. R., Wang, M. Q., & Gu, L. Y. (2008). Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers. Journal of Animal Physiology and Animal Nutrition, 92(2), 131–140. https://doi.org/10.1111/j.1439-0396.2007.00718.x

Zhao, C. Y., Tan, S. X., Xiao, X. Y., Qiu, X. S., Pan, J. Q., & Tang, Z. X. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research, 160(3), 361–367. https://doi.org/10.1007/s12011-014-0052-2

Downloads

Published

2024-12-31

How to Cite

Larasati, N. H. D., Dono, N. D., & Ariyadi, B. (2024). Pengaruh suplementasi nano zinc dalam pakan terhadap efisiensi pakan ayam KUB. Conference of Applied Animal Science Proceeding Series, 5, 123–129. https://doi.org/10.25047/animpro.2024.743

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.