Uji Beberapa Jamur Antagonis Terhadap Colletotrichum gloeosporiodes Penyebab Penyakit Busuk Buah Apel Manalagi (Malus sylvestris) Secara In Vitro
DOI:
https://doi.org/10.25047/agropross.2022.309Kata Kunci:
pummelo, mutation, diversityAbstrak
Colletotrichum Gloeosporiodes is one of the pathogenic fungi that causes fruit rot disease in apple plants. The control that has been widely used so far is chemical fungicides which cause negative effects, it is necessary to use an alternative control using antagonistic fungi that is safe and environmentally friendly. This study aims to determine the inhibition of several antagonistic fungi against the growth of the pathogen C. gloeosporiodes. The method used was a completely randomized design (CRD) with 4 types of antagonist fungi, 1 control and 5 replications. Antagonism test using dual culture method between antagonistic fungi Trichoderma harzianum, Trichoderma viridae, Trichoderma koningii, and Gliocladium sp. with C. gloeosporiodes. The test results showed that the antagonist fungus that had the highest percentage of inhibition against C. gloeosporiodes was T. harzianum at 87.8% and had a high inhibitory power category with a crude extract chitinase enzyme activity value of 4.30 U/mL and Gliocladium sp. has the lowest percentage of inhibition 64.3%. Based on these results, it can be concluded that T. harzianum has a high potential to control fruit rot disease in apples because it contains the chitinase enzyme which can degrade the cell wall of the pathogenic C. gloeosporiodes.
Unduhan
Referensi
Abiodun, J., Osaretin, B. I., Elizabeth, T. A., Benson, O. A., & Ajibola, P. A. (2017). Effectiveness of Pseudomonas species in the management of tomato early blight pathogen Alternaria solani. African Journal of Microbiology Research, 11(23), 972– 976. https://doi.org/10.5897/ajmr2017.8564
Agrios, G. N. (2005). Plant pathology . Fifth Edition. USA: Elsevier Academic Press.
Ajith, P.S., & Lakshmidevi, N. (2010). Effect of volatile and nonvolatile compounds from Trichoderma spp. against Colletotrichum capsici incitant of anthracnose on bell peppers. Nature and Science, 8(9), 265–269.
Barnett, H.L., Hunter, Barry B. (1998). Illusttrated general of imperfect fungi . APS Press
Benítez, T., Rincón, A.M., Limón, M.C., & Codón, A.C. (2004). Biocontrol mechanisms of Trichoderma strains. Int Microbiol, 7(4), 249–60.
Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2009). Bacillus -based biological control of plant diseases. Pesticides in the Modern World - Pesticides Use and Management. 520p
Degenkolb, T., von Dohren, H., Nielsen, K.F., Samuels, G.J., Bruckner, H. (2008). Recent advances and future prospects in peptaibiotics, hydrophobin, and mycotoxin research, and their importance for chemotaxonomy of Trichoderma and Hypocrea. Chem. Biodiversity, 5, 671–680.
Elsoud MMA & El Kady EM. (2019). Current trends in fungal biosynthesis of chitin and chitosan. Bull.Natl. Res. Cent. 43: 59. https://doi.org/10.1186/ s42269-019-0105-y
Febrilia, N.A.,Sri S., Dwi W., Risma, G.S., Qurrotun, A. (2013). Penghambatan pertumbuhan Colletotrichum gloeosporiodes oleh Trichoderma harzianum, Trichoderma koningii, Bacillus subtilis dan Pseudomonas flourescenc. Pelita Perkebunan. 29(1), 44-52
Gohel, V., Singh, A., Vimal, M., Ashwini, P., Chhatpar, H.S. (2006). Bioprospecting and Antifugal Potensial of Chitinolytic Microorganisms. African Journal of Biotechnology, 5, 54-72.
Grahovac, M., Inđić, D., Tanović, B., Lazić, S. Vuković, J., Hrustić, S., Gvozdenac. (2011). Integrated management of causal agents of postharvest fruit rot of apple. Pesticides and Phytomedicine, 26(4), 289-299
Gusnawaty, H., Muhammad, T., Danherman. (2014). Efektifitas Trichoderma Indigenus Sulawesi Tenggara Sebagai Biofungisida Terhadap Colletotrichum sp. Secara Invitro. Jurnal Agroteknos, 4(1), 38-43
Halim,Y., Hardoko., & Christy A. (2018). Optimum conditions for N-acetyl glucosamine production from Penaeus monodon shrimp shells by solid state fermentation using Trichoderma virens. AJMBES. 20(4), 1081–1088.
Hidayat, T. N. (2016). Uji Antagonis Trichoderma sp . T 4 Terhadap Jamur yang diisolasi dari Daun Bergejala Bercak Pada Bibit Kelapa Sawit ( Elaeis Guineensis Jacq .), 4, 8–13.
Insani, K.V., & Herdyastuti, N. (2016). Pengaruh konsentrasi enzim optimum pada pembentukan N-Asetilglukoamin. UNESA Journal of Chemistry.
Juariyah, S., Tondok, E. T., & Sinaga, M. S. (2019). Trichoderma dan Gliocladium untuk Mengendalikan Penyakit Busuk Akar Fusarium pada Bibit Kelapa Sawit. Jurnal Fitopatologi Indonesia, 14(6), 196. https://doi.org/10.14692/jfi.14.6.196
Kamil, Z., Rizk, M., Saleh, M., Moustafa, S., (2007). Isolation and Identification of Rhizosphere Soil Chitinolytic Bacteria and their Potential in Antifungal Biocontrol. Global Journal of Molecular Sciences, 2(2), 57-66.
El-Katatny, Gudelj, M., Robra, K.H., Elnaghy, M. H., Gübitz, G.M. (2001). Characterization of chitinase and an endo-beta-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of phytopatogen Sclerotium rolfsii. Appl Microbiol Biotechnol, 56 , 137-143
Muhibbudin, A., Setiyowat,i E.M., & Sektiono, A.W. (2021). Mechanism antagonism of Trichoderma viride againts several types of pathogens and productions of secondary metabolites. Agrosaintifika. Jurnal Ilmu-Ilmu Pertanian, 4(1), 243–252.
Nafisah, H., Pujiyanto, S., & Raharjo, B. (2017). Isolasi dan uji aktivitas kitinase isolat bakteri dari kawasan Geotermal Dieng Bioma: Berkala Ilmiah Biologi, 19(1), 22–29. https://doi.org/10.14710/bioma.19.1.22-29
Nugroho, T. T., C. Ginting., M. A., Wahyuningsih, A., Dahliaty, S.D., & Sukmarisa, Y. (2003). Isolasi dan Karakterisasi Sebagian Kitinase Trichoderma viride TNJ63. Jurnal Natur Indonesia, 5(2), 101-106.
Nunuk, W., & Muhammad, I. (2012). Aktivitas dan Karakter Kitinase Isolat Trichoderma sp. W34 A4 Asal Kepulauan Raja Ampat Papua Barat. Biosfera, 29(1) , 1-7.
Omumashaba, C.A., Yoshida, N. & Ogawa, K. (2001). Purification and Characterization of a Chitinase from Trichoderma viridae. J.Gen. Appl. Microbial, 47, 53-61.
Pal, K. K., & Gardener, B. McSpadden. (2006). Biological control of plant pathogens. The Plant Health Instructor, 1-25. doi: 10.1094/PHI-A-2006-1117-02.
Poria, V., Rana, A., Kumari, A., Grewal, J., Pranaw, K., & Singh, S. (2021). Current perspectives on chitinolytic enzymes and their agro-industrial applications. Biology, 10(12), 1319. https://doi.org/10.3390/biology10121319
Seema, M., Devaki, N.S. (2012). In vitro evaluation of biological control agent against Rhizoctonia solani. Journal of Agricultural Technology, 8(1), 233-240.
Verma, M., Brar, S.K., Tyagi, R.D., Surampalli, R.Y., & Valéro, J.R. (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Journal Biochem.Eng,37(1), 1–20.https://doi.org/10.1016/j. bej.2007.05.012
Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Woo, S. L., Nigro, M., Marra, R., .Lorito, M. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology J., 8(Suppl-1, M5), 127–139.
Wirawan, A., & Herdyastuti, N. (2013). Penetuan waktu inkubasi pada pembentukan senyawa N-Asetilglukosamin yang didegradasi secara enzimatis dari kitin. UNESA Journal of Chemistry. 2(3), 11–13.
Yu, Z. F., Qiao, M., Zhang, Y., & Zhang, K. Q. (2007). Two new species of Trichoderma from Yunnan, China. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 92(1), 101–108.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2022 Unun Triasih, Abdul Latief Abadi , Anton Muhibbudin, Sri Widyaningsih

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Hak cipta (Copyright) artikel yang dipublikasikan di Agropross : National Conference Proceedings of Agriculture dipegang oleh penulis (Copyright by Authors) di bawah Creative Commons Attribution 4.0 International License (CC-BY). Sehingga penulis tidak memerlukan perjanjian pengalihan hak cipta yang harus diserahkan kepada redaksi.