Teknologi Kecerdasan Buatan dalam Sistem Identifikasi Benih: A Review

Penulis

  • Sidiq Syamsul Hidayat PoliteknikNegeri Semarang
  • Dwi Rahmawati Politeknik Negeri Jember
  • Liliek Triyono PoliteknikNegeri Semarang
  • Tahan Prahara PoliteknikNegeri Semarang
  • M. Cahyo Ardi Prabowo PoliteknikNegeri Semarang

DOI:

https://doi.org/10.25047/agropross.2022.272

Kata Kunci:

Artificial Intelligence, Classification, Machine Learning, Machine Vision

Abstrak

Revolution made various advances in various fields, including agriculture. Agricultural technology is very influential in supporting the increase in agricultural production. Inspection of rice seeds is an important process in plant nurseries because it will have an impact on the amount of rice production. The majority of inspection processes are currently carried out conventionally, namely by expert inspectors who manually screen rice seed samples to identify species and quality of rice seeds. The conventional rice seed inspection process has several obstacles, namely the role of humans in carrying out inspections is still very large and it requires quite a lot of time in determining the results of rice seed inspections. The use of technology is expected to increase productivity in agricultural production, speed, and accuracy in the rice seed inspection process. Intelligence Technology. Artificial provides an alternative to the inspection process automatically, accurately and quickly. We present a design study of technology related to seed identification systems using Machine Learning and Machine Vision methods to classify the quality of rice seed varieties. This technology is designed to identify superior and non-superior seeds based on digital image data training. So that the inspection process is helped because the machine can help identify the characteristics of superior seeds and are not based on digital image data processing.

Unduhan

Data unduhan belum tersedia.

Referensi

Chatnuntawech, I., Tantisantisom, K., Khanchaitit, P., Boonkoom, T., Bilgic, B. and Chuangsuwanich, E., 2018. Rice classification using spatio-spectral deep convolutional neural network. arXiv preprint arXiv:1805.11491.

Deptan [Departemen Pertanian]. 2020. Rencana strategis Kementerian Pertanian. Departemen Pertanian Republik Indonesia.

Kiratiratanapruk, K., Temniranrat, P., Sinthupinyo, W., Prempree, P., Chaitavon, K., Porntheeraphat, S. and Prasertsak, A., 2020. Development of paddy rice seed classification process using machine learning techniques for automatic grading machine. Journal of Sensors, 2020.

Fabiyi, S.D., Vu, H., Tachtatzis, C., Murray, P., Harle, D., Dao, T.K., Andonovic, I., Ren, J. and Marshall, S., 2020. Varietal classification of rice seeds using RGB and hyperspectral images. IEEE Access, 8, pp.22493-22505.

Gupta, N., 2015. Identification and Classification of Rice varieties using Mahalanobis Distance by Computer Vision‖. International Journal of Scientific and Research Publications, 5(5).

Joshi, D., Butola, A., Kanade, S.R., Prasad, D.K., Mithra, S.A., Singh, N.K., Bisht, D.S. and Mehta, D.S., 2021. Label-free non-invasive classification of rice seeds using optical coherence tomography assisted with deep neural network. Optics & Laser Technology, 137, p.106861.

Liu, Z.Y., Cheng, F., Ying, Y.B. and Rao, X.Q., 2005. Identification of rice seed varieties using neural network. Journal of Zhejiang University. Science. B, 6(11), p.1095.

Uddin, M., Islam, M.A., Shajalal, M., Hossain, M.A., Yousuf, M. and Iftekhar, S., 2021. Paddy seed variety identification using t20-hog and haralick textural features. Complex & Intelligent Systems, pp.1-15.

Unduhan

Diterbitkan

2022-10-19

Cara Mengutip

Hidayat, S. S., Rahmawati, D., Triyono, L., Prahara, T., & Prabowo, M. C. A. (2022). Teknologi Kecerdasan Buatan dalam Sistem Identifikasi Benih: A Review. Agropross : National Conference Proceedings of Agriculture, 6, 59–64. https://doi.org/10.25047/agropross.2022.272

Artikel paling banyak dibaca berdasarkan penulis yang sama