Teknologi Kecerdasan Buatan dalam Sistem Identifikasi Benih: A Review
DOI:
https://doi.org/10.25047/agropross.2022.272Kata Kunci:
Artificial Intelligence, Classification, Machine Learning, Machine VisionAbstrak
Revolution made various advances in various fields, including agriculture. Agricultural technology is very influential in supporting the increase in agricultural production. Inspection of rice seeds is an important process in plant nurseries because it will have an impact on the amount of rice production. The majority of inspection processes are currently carried out conventionally, namely by expert inspectors who manually screen rice seed samples to identify species and quality of rice seeds. The conventional rice seed inspection process has several obstacles, namely the role of humans in carrying out inspections is still very large and it requires quite a lot of time in determining the results of rice seed inspections. The use of technology is expected to increase productivity in agricultural production, speed, and accuracy in the rice seed inspection process. Intelligence Technology. Artificial provides an alternative to the inspection process automatically, accurately and quickly. We present a design study of technology related to seed identification systems using Machine Learning and Machine Vision methods to classify the quality of rice seed varieties. This technology is designed to identify superior and non-superior seeds based on digital image data training. So that the inspection process is helped because the machine can help identify the characteristics of superior seeds and are not based on digital image data processing.
Unduhan
Referensi
Chatnuntawech, I., Tantisantisom, K., Khanchaitit, P., Boonkoom, T., Bilgic, B. and Chuangsuwanich, E., 2018. Rice classification using spatio-spectral deep convolutional neural network. arXiv preprint arXiv:1805.11491.
Deptan [Departemen Pertanian]. 2020. Rencana strategis Kementerian Pertanian. Departemen Pertanian Republik Indonesia.
Kiratiratanapruk, K., Temniranrat, P., Sinthupinyo, W., Prempree, P., Chaitavon, K., Porntheeraphat, S. and Prasertsak, A., 2020. Development of paddy rice seed classification process using machine learning techniques for automatic grading machine. Journal of Sensors, 2020.
Fabiyi, S.D., Vu, H., Tachtatzis, C., Murray, P., Harle, D., Dao, T.K., Andonovic, I., Ren, J. and Marshall, S., 2020. Varietal classification of rice seeds using RGB and hyperspectral images. IEEE Access, 8, pp.22493-22505.
Gupta, N., 2015. Identification and Classification of Rice varieties using Mahalanobis Distance by Computer Vision‖. International Journal of Scientific and Research Publications, 5(5).
Joshi, D., Butola, A., Kanade, S.R., Prasad, D.K., Mithra, S.A., Singh, N.K., Bisht, D.S. and Mehta, D.S., 2021. Label-free non-invasive classification of rice seeds using optical coherence tomography assisted with deep neural network. Optics & Laser Technology, 137, p.106861.
Liu, Z.Y., Cheng, F., Ying, Y.B. and Rao, X.Q., 2005. Identification of rice seed varieties using neural network. Journal of Zhejiang University. Science. B, 6(11), p.1095.
Uddin, M., Islam, M.A., Shajalal, M., Hossain, M.A., Yousuf, M. and Iftekhar, S., 2021. Paddy seed variety identification using t20-hog and haralick textural features. Complex & Intelligent Systems, pp.1-15.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2022 Sidiq Syamsul Hidayat , Dwi Rahmawati , Liliek Triyono , Tahan Prahara , M.Cahyo Ardi Prabowo

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Hak cipta (Copyright) artikel yang dipublikasikan di Agropross : National Conference Proceedings of Agriculture dipegang oleh penulis (Copyright by Authors) di bawah Creative Commons Attribution 4.0 International License (CC-BY). Sehingga penulis tidak memerlukan perjanjian pengalihan hak cipta yang harus diserahkan kepada redaksi.