Analisis Kadar Prolin Pada Daun Teh Pascapanen Dalam Kondisi Hipoksia
DOI:
https://doi.org/10.25047/agropross.2025.835Kata Kunci:
Hypoxia, Tea, Tea leaves, ProlineAbstrak
GABA tea (Gamma-aminobutyric acid tea) is a type of tea specially processed to increase its GABA content, a compound known for its calming effects and potential in preventing neurological disorders, diabetes, and cancer. One method to enhance GABA levels is through hypoxic treatment, such as post-harvest leaf immersion. GABA accumulation in plants has often been linked to increased proline levels, especially under oxidative stress conditions. However, this relationship has not been widely studied in post-harvest tea leaves. This study aims to analyze proline accumulation in tea leaves subjected to low-oxygen conditions, to assess whether GABA enhancement is directly correlated with proline levels. Freshly harvested tea shoots (one bud and three leaves) were divided into four treatment groups: a control group stored at 20°C, and groups immersed in water for 8, 16, and 24 hours. Proline content was measured for each treatment. The results showed that proline levels increased immediately after harvesting but decreased with longer immersion times. These findings suggest that hypoxic conditions induced by immersion do not promote proline accumulation, in contrast to the well-documented increase in GABA under similar conditions. Therefore, proline may not serve as a direct indicator of GABA accumulation in post-harvest tea leaves.
Unduhan
Referensi
FAOSTAT. (n.d.). https://www.fao.org/faostat/en/.
Khan, N., & Mukhtar, H. (2013). Tea and health: studies in humans. Current pharmaceutical design, 19(34), 6141–6147. https://doi.org/10.2174/1381612811319340008.
Wong, C. G., Bottiglieri, T., & Snead, O. C., 3rd (2003). GABA, gamma-hydroxybutyric acid, and neurological disease. Annals of neurology, 54 Suppl 6, S3–S12. https://doi.org/10.1002/ana.10696.
Cheng, T. C., & Tsai, J. F. (2009). GABA tea helps sleep. Journal of alternative and complementary medicine (New York, N.Y.), 15(7), 697–698. https://doi.org/10.1089/acm.2009.0023.
Tsushida, T., & Murai, T. (1987). Conversion of Glutamic Acid to γ-Aminobutyric Acid in Tea Leaves under Anaerobic Conditions. Agricultural and Biological Chemistry, 51(11), 2865–2871. https://doi.org/10.1080/00021369.1987.10868498.
Wu, Q. Y., Ma, S. Z., Zhang, W. W., Yao, K. B., Chen, L., Zhao, F., & Zhuang, Y. Q. (2018). Accumulating pathways of γ-aminobutyric acid during anaerobic and aerobic sequential incubations in fresh tea leaves. Food chemistry, 240, 1081–1086. https://doi.org/10.1016/j.foodchem.2017.08.004.
Wu, C., Huang, Y., Lai, X., Lai, R., Zhao, W., Zhang, M., & Zhao, W. (2014). Study on quality components and sleep-promoting effect of GABA Maoyecha tea. Journal of Functional Foods, 7, 180–190. https://doi.org/10.1016/j.jff.2014.02.013.
Liao, J., Wu, X., Xing, Z., Li, Q., Duan, Y., Fang, W., & Zhu, X. (2017b). γ-Aminobutyric Acid (GABA) Accumulation in Tea (Camellia sinensis L.) through the GABA Shunt and Polyamine Degradation Pathways under Anoxia. Journal of Agricultural and Food Chemistry, 65(14), 3013–3018. https://doi.org/10.1021/acs.jafc.7b00304.
Li, L., Dou, N., Zhang, H., & Wu, C. (2021). The versatile GABA in plants. Plant signaling & behavior, 16(3), 1862565. https://doi.org/10.1080/15592324.2020.1862565.
Signorelli, S., Dans, P. D., Coitiño, E. L., Borsani, O., & Monza, J. (2015). Connecting Proline and γ-Aminobutyric Acid in Stressed Plants through Non-Enzymatic Reactions. PLoS ONE, 10(3), e0115349. https://doi.org/10.1371/journal.pone.0115349.
Corpas, F. J., Palma, J. M., Del Río, L. A., & Barroso, J. B. (2013). Protein tyrosine nitration in higher plants grown under natural and stress conditions. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00029.
Adamipour, N., Nazari, F. and Teixeira da Silva, J.A. (2025). GABA Biosynthesis Pathways and its Signaling in Plants. In GABA in Plants (eds S. Singh, D.K. Tripathi and V.P. Singh). https://doi.org/10.1002/9781394217786.ch2.
Cao, S., Cai, Y., Yang, Z., & Zheng, Y. (2012). MeJA induces chilling tolerance in loquat fruit by regulating proline and γ-aminobutyric acid contents. Food Chemistry, 133(4), 1466–1470. https://doi.org/10.1016/j.foodchem.2012.02.035.
Casaretto, E., Signorelli, S., Gallino, J. P., Vidal, S., & Borsani, O. (2020). Endogenous •NO accumulation in soybean is associated with initial stomatal response to water deficit. Physiologia Plantarum, 172(2), 564–576. https://doi.org/10.1111/ppl.13259
Verslues, P. E., & Sharp, R. E. (1999). Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone. Plant physiology, 119(4), 1349–1360. https://doi.org/10.1104/pp.119.4.1349.
Yoshiba, Y., Kiyosue, T., Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1997). Regulation of levels of proline as an osmolyte in plants under water stress. Plant & cell physiology, 38(10), 1095–1102. https://doi.org/10.1093/oxfordjournals.pcp.a029093.
Wahono, E., Izzati, M., & Parman, S. (2018). Interaksi antara Tingkat Ketersediaan Air dan Varietas terhadap Kandungan Prolin serta Pertumbuhan Tanaman Kedelai (Glycine max L. Merr). Buletin Anatomi Dan Fisiologi, 3(1), 11. https://doi.org/10.14710/baf.3.1.2018.11-19.
Pritchard, S. G., Ju, Z., van Santen, E., Qiu, J., Weaver, D. B., Prior, S. A., & Rogers, H. H. (2000). The influence of elevated CO2 on the activities of antioxidative enzymes in two soybean genotypes. Australian Journal of Plant Physiology, 27(11), 1061–1068. https://doi.org/10.1071/pp99206
Konstantinova, T., Parvanova, D., Atanassov, A., & Djilianov, D. (2002). Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Science, 163(1), 157–164. https://doi.org/10.1016/s0168-9452(02)00090-0.
Delauney, A. J., & Verma, D. P. S. (1993). Proline biosynthesis and osmoregulation in plants. The Plant Journal, 4(2), 215–223. https://doi.org/10.1046/j.1365-313x.1993.04020215.x.
Tsushida, T., & Murai, T. (1987). Conversion of Glutamic Acid toγ-Aminobutyric Acid in Tea Leaves under Anaerobic Conditions. Agricultural and Biological Chemistry, 51(11), 2865–2871. https://doi.org/10.1080/00021369.1987.10868498.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Limartaida Siahaan, Dora Palupi

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.
Hak cipta (Copyright) artikel yang dipublikasikan di Agropross : National Conference Proceedings of Agriculture dipegang oleh penulis (Copyright by Authors) di bawah Creative Commons Attribution 4.0 International License (CC-BY). Sehingga penulis tidak memerlukan perjanjian pengalihan hak cipta yang harus diserahkan kepada redaksi.