Seleksi dan Karakterisasi Pertumbuhan Cendawan Tanah Penghasil Enzim Protease Asal Rhizosfer Padi di Tarakan – Kalimantan Utara

Penulis

  • Muh Adiwena Universitas Borneo Tarakan
  • Mardhiana Universitas Borneo Tarakan
  • Aditya Murtilaksono Universitas Borneo Tarakan
  • Dwi Santoso Universitas Borneo Tarakan
  • Rizza Wijaya Politeknik Negeri Jember
  • Ankardiansyah Pandu Pradana Universitas Jember

DOI:

https://doi.org/10.25047/agropross.2020.40

Kata Kunci:

Diameter, Ekstraseluler, Isolat, Makroskopis, Proteolitik

Abstrak

Cendawan tanah memegang peran esensial dalam budidaya pertanian berkelanjutan. Kemampuannya dalam memproduksi berbagai senyawa metabolit menjadikan cendawan sebagai salah satu agens hayati yang potensial untuk mengendalikan patogen tanaman. Salah satu metabolit sekunder cendawan yang bersifat anti-patogen adalah enzim ekstraseluler protease. Enzim ini dapat mendegradasi dinding sel cendawan patogen, nematoda, dan telur nematoda. Penelitian ini bertujuan untuk mengisolasi cendawan penghasil enzim protease dari rhizosfer padi dan mengkarakterisasi pertumbuhannya. Sampel tanah diambil dari 5 titik pengambilan sampel pada lahan padi petani di Kelurahan Mamburungan, Kota Tarakan, Kalimantan Utara. Isolasi dilakukan menggunakan media potato dextrose agar (PDA) pada suhu 37°C di Laboratorium Perlindungan Tanaman, Universitas Borneo Tarakan. Cendawan yang tumbuh dikarakterisasi bentuk makroskopisnya secara visual. Pengujian aktivitas proteolitik dilakukan menggunakan media PDA yang ditambah dengan skim milk. Seluruh cendawan yang tumbuh kemudian dikarakterisasi kecepatan tumbuhnya selama 11 hari. Hasil penelitian menunjukkan terdapat 7 isolat cendawan yang berhasil diisolasi, dan 3 (48,85%) diantaranya mampu menghasilkan enzim protease. Isolat yang mampu menghasilkan enzim protease adalah isolat C5, C6, dan C7. Selanjutnya, berdasarkan karakter pertumbuhannya, tujuh isolat yang diperoleh menunjukkan respon yang beragam. Pada hari ke-11, pertumbuhan tertinggi ditunjukkan oleh isolat C1, C2, C5, dan C6 dengan diameter 8,5 cm. Pertumbuhan paling lambat ditunjukkan oleh isolat C7 dengan diameter 2,53 cm. Penelitian ini memberikan informasi bahwa terdapat cendawan proteolitik dari rhizosfer padi pada lokasi penelitian dengan karakter pertumbuhan yang beragam.

Unduhan

Data unduhan belum tersedia.

Biografi Penulis

Muh Adiwena, Universitas Borneo Tarakan

Program Studi Agroteknologi, Fakultas Pertanian

Mardhiana, Universitas Borneo Tarakan

Program Studi Agroteknologi, Fakultas Pertanian

Aditya Murtilaksono, Universitas Borneo Tarakan

Program Studi Agroteknologi, Fakultas Pertanian

Dwi Santoso, Universitas Borneo Tarakan

Program Studi Agroteknologi, Fakultas Pertanian

Rizza Wijaya, Politeknik Negeri Jember

Jurusan Teknologi Pertanian, Program Studi Keteknikan Pertanian

Ankardiansyah Pandu Pradana, Universitas Jember

Program Studi Proteksi Tanaman, Fakultas Pertanian

Referensi

Abri, A. (2015). Isolasi cendawan rhisozfer penghasil hormone indol acetic acid (IAA) pada padi aromatik Tanatoraja. Prosiding Seminar Nasional Mikrobiologi Kesehatan dan Lingkungan (pp. 72-78). Makassar (ID), UIN Alauddin Makassar.

Achmad, A.,&Suryana, I. (2009). Pengujian aktivitas ekstrak daun sirih (Piper betle Linn.) terhadap Rhizoctonia sp. secara in vitro.Buletin Penelitian Tanaman Rempah dan Obat, 20(1), 92-98.

Batista, B.L., Barião, C.V., Souza, J.M.O., Paulelli, A.C.C., Rocha, B.A., Anderson, R.M.O., Fabiana, R.S., Gilberto, U.L.B., Ludmilla, T., Márcia, R.V., & Fernando, B.J.(2016). A low-cost and environmentally-friendly potential procedure for inorganic-As remediation based on the use of fungi isolated from rice rhizosphere. Journal of Environmental Chemical Engineering, 4(1),891-898. DOI: 10.1016/j.jece.2015.12.029.

Bogner, C.W., Kamdem, R.S., Sichtermann, G., Matthäus, C., Hölscher, D., Popp, J., Proksch, P., Grundler, F.M.W., & Schoutencor, A.(2017). Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microbial Biotechnology, 10(1), 175-188. DOI: 10.1111/1751-7915.12467.

Deng, Z., & Cao, L. (2017). Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere, 168(1), 1100-1106. DOI: 10.1016/j.chemosphere.2016.10.097.

El Mujtar, V., Muñoz, N., Mc Cormick, B.P., Pulleman, M., &Tittonell, P. (2019). Role and management of soil biodiversity for food security and nutrition; where do we stand?.Global Food Security, 20, 132-144. DOI: 10.1016/j.gfs.2019.01.007.

Elad, Y., & Kapat, A. (1999). The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 105(2),177-189. DOI: 10.1023/A:1008753629207.

He, Y., Wang, B., Chen, W., Cox, R.J., He, J.,& Chen, F. (2018). Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnology Advances, 36(3), 739-783. DOI: 10.1016/j.biotechadv.2018.02.001.

Karlen, D.L., Veum, K.S., Sudduth, K.A., Obrycki, J.F., &Nunes, M.R. (2019). Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil and Tillage Research, 195,1-10. DOI: 10.1016/j.still.2019.104365.

Langner, T., & Göhre, V. (2016). Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Current Genetics, 62(2),243-254. DOI: 10.1007/s00294-015-0530-x.

Lawrence, P,K.,& Koundal, K.R. (2002). Plant protease inhibitors in control of phytophagous insects. Electronic Journal of Biotechnology, 5(1), 5-6.

Lian, L., Tian, B., Xiong, R., Zhu, M., Xu, J., & Zhang, K.Q.(2007). Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Letters in Applied Microbiology, 45(3),262-269. DOI: 10.1111/j.1472-765X.2007.02184.x.

Lozano-Tovar, M., Garrido-Jurado, I., Quesada-Moraga, E., Raya-Ortega, M., &Trapero-Casas, A. (2017). Metarhizium brunneum and Beauveria bassiana release secondary metabolites with antagonistic activity against Verticillium dahliae and Phytophthora megasperma olive pathogens. Crop Protection, 100,186-195. DOI: 10.1016/j.cropro.2017.06.026.

Mardhiana, M., Pradana, A. P., Adiwena, M., Santoso, D., Wijaya, R., & Murtilaksono, A. (2017). Use of endophytic bacteria from roots of Cyperus rotundus for biocontrol of Meloidogyne incognita. Biodiversitas Journal of Biological Diversity, 18(4), 1308-1315. DOI: 10.13057/biodiv/d180404.

Michel, V., Fonty, G., Millet, L., Bonnemoy, F., &Gouet, P. (1993). In vitro study of the proteolytic activity of rumen anaerobic fungi. FEMS Microbiology Letters, 110(1), 5-9. DOI:10.1111/j.1574-6968.1993.tb06287.x.

Pascale, A., Vinale, F., Manganiello, G., Nigro, M., Lanzuise, S.,Ruocco, M., Lombardi, N., & Woo, S.L. (2017). Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection, 92,176-181. DOI: 10.1016/j.cropro.2016.11.010.

Pradana, A. (2016). Konsorsium bakteri endofit sebagai agens biokontrol Nematoda Puru Akar Meloidogye incognita pada Tomat. Tesis]. Bogor: Sekolah Pascasarjana. Institut Pertanian Bogor.

Retieved form : https://repository.ipb.ac.id/handle/123456789/82174

Reino, J.L., Guerrero, R.F., Hernández-Galán, R.,&Collado, I.G. (2008). Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 7(1), 89-123. DOI: 10.1007/s11101-006-9032-2.

Sahebani, N., &Hadavi, N. (2008). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry. 40(8), 2016-2020. DOI: 10.1016/j.soilbio.2008.03.011.

Siddiqui, I.A., Haas, D., & Heeb, S. (2005). Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Applied and Environmental Microbiology, 71(9), 5646-5649. DOI: 10.1128/AEM.71.9.5646-5649.2005.

Smith, M.E., Facelli, J.M., & Cavagnaro, T.R. (2018). Interactions between soil properties, soil microbes and plants in remnant-grassland and old-field areas: a reciprocal transplant approach. Plant and Soil, 433(1-2),127-145. DOI: 10.1007/s11104-018-3823-2.

Suarez, B., Rey, M., Castillo, P., Monte, E., & Llobell, A. (2004). Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Applied Microbiology and Biotechnology, 65(1), 46-55. DOI: 10.1007/s00253-004-1610-x.

Větrovský, T., Štursová, M., & Baldrian, P. (2016). Fungal communities in soils: soil organic matter degradation. Di dalam Martin, F., & Uroz, S (eds). Microbial Environmental Genomics (MEG)(pp. 89-100). Springer, UK.

Vezzani, F.M., Anderson, C., Meenken, E., Gillespie, R., Peterson, M., & Beare, M.H. (2018). The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions. Soil and Tillage Research, 175,139-149. DOI: 10.1016/j.still.2017.09.002.

Vimal, S.R., Singh, J.S., Arora, N.K., & Singh, S. (2017). Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere, 27(2), 177-192. DOI: 10.1016/S1002-0160(17)60309-6.

Wade, W.N., &Beuchat, L.R. (2003). Proteolytic fungi isolated from decayed and damaged raw tomatoes and implications associated with changes in pericarp pH favorable for survival and growth of foodborne pathogens. Journal of Food Protection, 66(6), 911-917.DOI: 10.4315/0362-028x-66.6.911.

Youssef, M.A., Aly, A., Tohamy, M., & Ghonim, M. (2018). Studies on fungi associated with pea seeds and their effect on germination and some seed characters. Zagazig Journal of Agricultural Research, 45(4), 1291-1308. DOI: 10.21608/zjar.2018.48574.

Zahn, G., &Amend, A.S. (2019). Foliar fungi alter reproductive timing and allocation in Arabidopsis under normal and water-stressed conditions. Fungal Ecology, 41, 101-106. DOI: 10.1016/j.funeco.2019.04.002.

Unduhan

Diterbitkan

2020-08-01

Cara Mengutip

Adiwena, M., Mardhiana, Murtilaksono, A., Santoso, D., Wijaya, R., & Pradana, A. P. (2020). Seleksi dan Karakterisasi Pertumbuhan Cendawan Tanah Penghasil Enzim Protease Asal Rhizosfer Padi di Tarakan – Kalimantan Utara. Agropross : National Conference Proceedings of Agriculture, 4, 92–100. https://doi.org/10.25047/agropross.2020.40